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Abstract

Black-box adversarial attacks on Large Vision-
Language Models (LVLMs) are challenging
due to missing gradients and complex multi-
modal boundaries. While prior state-of-the-art
M-Attack performs well using local crop-level
matching between source and target images, we
find this induces high-variance, nearly orthogo-
nal gradients across iterations, violating coher-
ent local alignment and destabilizing optimiza-
tion. We attribute this to (i) ViT translation sen-
sitivity that yields spike-like gradients and (ii)
structural asymmetry between source and target
crops. We reformulate local matching as an asym-
metric expectation over source transformations
and target semantics, and build a gradient de-
noising upgrade to M-Attack. On the source
side, Multi-Crop Alignment (MCA) averages gra-
dients from multiple independently sampled lo-
cal views per iteration to reduce variance. On
the target side, Auxiliary Target Alignment (ATA)
replaces aggressive target augmentation with a
small auxiliary set from a semantically corre-
lated distribution, producing a smoother, lower-
variance target manifold. We further reinterpret
momentum as Patch Momentum, replaying his-
torical crop gradients, combined with a refined
patch-size ensemble (PE+), this strengthens trans-
ferable directions. Together these modules form
our M-Attack-V2 in this work, a simple, modular
enhancement over M-Attack that substantially im-
proves transfer-based black-box attacks on fron-
tier LVLMs: boosting success rates on Claude-4.0
( ) from 8%→30%, Gemini-2.5-Pro ( ) from
83%→97%, and GPT-5 ( ) from 98%→100%,
outperforming all prior black-box LVLM attacks.
Code and data are publicly available at this link.

†Corresponding Author. Preprint. February 7, 2026.
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Figure 1. Improvement of M-Attack-V2 over M-Attack on up-to-
date commercial black-box models (Claude 4, Gemini 2.5 and
GPT-5). ASR and KMR stand for attack success rate and keyword
matching rate, respectively.

1. Introduction
Large Vision-Language Models (LVLMs) have become
foundational to modern AI systems, enabling multimodal
tasks like image captioning (Hu et al., 2022; Salaberria
et al., 2023; Chen et al., 2022b; Tschannen et al., 2023),
VQA (Luu et al., 2024; Özdemir & Akagündüz, 2024), and
visual reasoning (OpenAI, 2025). However, their visual
modules remain vulnerable to adversarial attacks, subtle per-
turbations that mislead models while remaining impercepti-
ble to humans. Prior efforts, including AttackVLM (Zhao
et al., 2023), CWA (Chen et al., 2024), SSA-CWA (Dong
et al., 2023a), AdvDiffVLM (Guo et al., 2024), and most ef-
fectively, recent state-of-the-art M-Attack (Li et al., 2025),
which have exploited and addressed this weakness through
local-level matching and surrogate model ensembles, sur-
passing 90% success rates on models like GPT-4o.

Despite promising performance of M-Attack, our analysis
reveals that its gradient signals are highly unstable: Even
overlapping large pixel regions, two consecutive local crops
share nearly orthogonal gradients. In other words, high
similarity in the pixel and embedding spaces does not trans-
late to high similarity in the gradient space. The reason
is that ViTs’ gradient pattern is sensitive to translation. A
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tiny shift changes pixels contained in each token, altering
self-attention. Moreover, patch-wise, spike-like gradient
amplifies the mismatch within just a few pixels. We counter
this effect by aggregating gradients from multiple crops
within the same iteration, a strategy we call Multi-Crop
Alignment (MCA). From a theoretical angle, MCA aggre-
gates gradients across multiple views in a single iteration,
smoothing local inconsistencies and improving cross-crop
gradient stability.

We further observe that the source and target transforma-
tions in M-Attack operate in different semantic spaces: one
emphasizing extraction, the other generalization. Aggres-
sive target augmentation introduces harmful variance. Our
Auxiliary Target Alignment (ATA) mitigates this by iden-
tifying semantically similar auxiliary images to create a
low-variance embedding subspace, then applying only mild
shifts to enhance transferability without destabilizing the
optimization. Classic momentum is reinterpreted under
this framework as Patch Momentum (PM), a replay mech-
anism that recycles past gradients across random crops to
stabilize optimization. In parallel, we also re-examine and
enrich M-Attack’s model selection criterion and choose a
delicately selected ensemble set with diverse patch sizes to
mitigate the difficulty in cross-patch transfer, of which we
find that the attention concentrates more on the main object.
We term it Patch Ensemble+ (PE+).

Together, these components, MCA, ATA, PM, and PE+,
form the basis of M-Attack-V2, a robust gradient denoising
framework that significantly outperforms existing black-box
attack methods. Our method raises attack success rates
from 98%→100% on GPT-5, 8%→30% on Claude-4, and
83%→97% on Gemini-2.5-Pro, achieving state-of-the-art
performance across the board. This study not only offers
a practical, modular attack strategy but also sheds light
on the gradient behavior of ViT-based LVLMs under local
perturbations. To summarize, our contributions are:

• We show crop-level matching yields high-variance,
near-orthogonal gradients (from ViT translation sensi-
tivity and source/target crop asymmetry), destabilizing
black-box optimization.

• We recast local matching as an asymmetric expectation
and introduce MCA (multi-view gradient averaging)
+ ATA (auxiliary semantically correlated targets) to
reduce variance and smooth the target manifold.

• We add Patch Momentum + refined PE+ to amplify
transferable directions, delivering large ASR gains on
frontier LVLMs (e.g., Claude-4.0 8%→30%, Gemini-
2.5-Pro 83%→97%, GPT-5 98%→100%)

2. Related Work
Large Vision Language Models. Transformer-based
LVLMs learn visual-semantic representations from large-
scale image-text data, enabling tasks like image caption-

ing (Salaberria et al., 2023; Hu et al., 2022; Chen et al.,
2022b; Tschannen et al., 2023), visual QA (Luu et al.,
2024; Özdemir & Akagündüz, 2024), and cross-modal
reasoning (Wu et al., 2025; Ma et al., 2023; Wang et al.,
2024). Open-source models such as BLIP-2 (Li et al., 2022),
Flamingo (Alayrac et al., 2022), and LLaVA (Liu et al.,
2023) show strong benchmark performance. Commercial
models like GPT-4o, Claude-3.5 (Anthropic, 2024a), and
Gemini-2.0 (Team et al., 2023) offer advanced reasoning and
real-world adaptability, with their successors, GPT-o3 (Ope-
nAI, 2025), Claude 3.7-Sonnet (Anthropic, 2024b), and
Gemini-2.5-Pro, able to reason over both text and images.

LVLM transfer-based attack. Black-box attacks include
query-based (Dong et al., 2021; Ilyas et al., 2018) and
transfer-based (Dong et al., 2018; Liu et al., 2017) (our fo-
cus in this work). AttackVLM (Zhao et al., 2023) pioneered
transfer-based targeted LVLM attacks using CLIP (Radford
et al., 2021) and BLIP (Li et al., 2022) surrogates, showing
image-to-image feature matching beats cross-modal opti-
mization, later adopted by (Chen et al., 2024; Guo et al.,
2024; Dong et al., 2023a; Li et al., 2025). CWA (Chen et al.,
2024) and SSA-CWA (Dong et al., 2023a) extended this
to Bard (Team et al., 2023): CWA improves transferability
via sharpness-aware minimization (Foret et al., 2021; Chen
et al., 2022a), while SSA-CWA adds spectrum-guided aug-
mentation with SSA (Long et al., 2022). AnyAttack (Zhang
et al., 2024) uses image-image matching with large-scale
pretraining and fine-tuning. AdvDiffVLM (Guo et al., 2024)
integrates feature matching into diffusion guidance and pro-
poses Adaptive Ensemble Gradient Estimation (AEGE) for
smoother ensemble scores. M-Attack further surpasses
these via local-level matching of source and target with
an ensemble of surrogate models and diverse patch sizes,
and FOA-Attack (Jia et al., 2025) extends alignment from
CLS to local patch tokens for additional gains. However,
local-level matching still has limitations, we next introduce
its background before analyzing and addressing them.

3. Approach
3.1. Preliminaries and Limitations of Local-level

Matching-Based Methods

Local-level matching in M-Attack. Consider a clean
source image X̃sou and a target image Xtar. The objective of
black-box transfer attacks is to minimally perturb the source
image by δ so that the perturbed image Xsou = X̃sou + δ
aligns semantically with the target under an inaccessible
black-box model fξ. Due to the inaccessibility of fξ, sur-
rogate models fϕ approximate the semantic alignment via
cosine similarity:

argmax
Xsou

CS(fϕ(Xsou), fϕ(Xtar)) s.t. ∥δ∥p ≤ ϵ, (1)
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(a) Gradient cosine similarity between two crops drops quickly with
IoU and falls below 0.1 when IoU < 0.8, despite shared pixels.
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Figure 2. Cosine similarity of gradients from random crops. (a) Similarity vs. IoU between two crops in a fixed iteration, showing rapid
decay and values < 0.1 once IoU < 0.8. (b) Similarity between consecutive source gradients. V1’s gradient similarity is almost zero,
while v2 improves it to around 0.2. Results are averaged over 200 runs.

where CS denotes cosine similarity. M-Attack enhances
Eq. (1) using local-level matching. At iteration i, it applies
predefined local transformations Ts and Tt to extract local
area x̂s

i from the source Xsou and x̂t
i from the target Xtar,

respectively. These transformations satisfy essential prop-
erties, such as spatial overlap and diversified coverage of
extracted local regions {x̂i} (Li et al., 2025). Formally, the
local-level matching optimizes:

MTs,Tt = Efϕj∼ϕ[CS(fϕj (x̂
s
i ), fϕj (x̂

t
i))], (2)

where fϕj is sampled from an ensemble of surrogate models
ϕ. Intuitively, matching local image regions instead of entire
images enhances the semantic precision of perturbations
by directing optimization towards semantically significant
details. Despite its effectiveness, M-Attack encounters a
critical challenge of unexpectedly low gradient similarity,
which we investigate in detail next.

Extremely low gradient overlap. In M-Attack two ran-
dom crops x̂s

i and x̂t
i are matched at every iteration. One

would expect the gradients inside the shared region of two
successive source crops, i.e.,

(
∇x̂s

i
MTs,Tj

,∇x̂s
i+1
MTs,Tj

)
,

to correlate, because the underlying pixels partly coincide.
Supursingly, Fig. 2b shows the opposite: their cosine simi-
larity is almost zero. We then keep the same fixed iteration
and repeatedly draw two random crops at different scales
and check the cosine similarity of their gradients (Fig. 2a).

Our finding reveals an exponential decay that plateaus below
0.1 once the overlap is smaller than 0.80 IoU. We find that
this unexpectedly low gradient overlap mainly stems from
two factors: ViTs’ inherent translation sensitivity and an
overlooked asymmetry in the local matching framework.
We first examine the translation effect.

1) Patch-wise, spike-like gradient sensitive to translation.
Because ViTs tokenize images on a fixed, non-overlapping
grid, even sub-pixel changes each patch’s token mix. These
token changes ripple through self-attention, altering weights

and redirecting gradients for all tokens, so the resulting
pixel-level gradient pattern diverges sharply. Worse, gradi-
ent magnitudes are uneven. Therefore, even similar patterns
but missing a few pixels might completely break gradient
similarity (Fig. 3b).

2) Asymmetric Transform Branches. In M-Attack, both the
source and target images are cropped, yet playing distinct
roles. Cropping the source acts directly in pixel space: it
rearranges patch embeddings and attention weights in the
forward pass, ending up with guidance of different views.
By contrast, cropping the target solely translates the target
representation, thereby shifting the reference embedding
in feature space. One sculpts the perturbation, while an-
other moves the goalpost, formulating asymmetric match-
ing. M-Attack overlooked this and implementations target
translation alternate between a radical crop and an identity
map, struggles between explore-exploitation trade-off and
potentially risk in high variance of target embedding.

3.2. Asymmetric Matching over Expectation

To mitigate the issues above, we begin by systematically re-
formulating the original objective function as an expectation
over local transformations within an asymmetric matching
framework:

min
∥Xsou∥p≤ϵ

ET ∼D,y∼Y [L(f(T (Xsou)), y)] , (3)

where D represents the distribution of local transformations,
and Y denotes the distribution over target semantics. ∥·∥p is
ℓp constraint for imperceptibility. Conceptually, this formu-
lation corresponds to embedding specific semantic content
y into a locally transformed area T (Xsou), thus highlighting
the intrinsic asymmetry compared to M-Attack’s original
formulation. Within this framework, our proposed enhance-
ments, i.e., Multi-Crop Alignment (MCA) and Auxiliary
Target Alignment (ATA), can be interpreted as strategies to
improve the accuracy of the expectation estimation and the
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sampling quality of the semantic distribution Y .

3.3. Gradient Denoising via Multi-Crop Alignment

To obtain a low-variance estimate of expected loss gradient
ET ∼D,y∼Y [∇XsouL(f(T (Xsou)),y)], we draw K indepen-
dent crops {T }Kk=1 and average their individual gradients:

∇XsouL̂(Xsou) =
1

K

K∑
k=1

∇XsouL(f(Tk(Xsou)), y). (4)

This Multi-Crop Alignment is an unbiased Monte-Carlo
estimator, reducing the variance with K > 1.

Theorem 3.1. Let gk = ∇XsouL(f(Tk(Xsou)), y) denote
the gradient from Tk, µ = E[gk], σ2 = E[∥gk − µ∥22] de-
note the mean and variance, and pkℓ denote the pair-wise
correlation pkℓ =

⟨gk−µ,gℓ−µ⟩
∥gk−µ∥2∥gℓ−µ∥2 . The gradient variance

from K averaged crops is bounded by:

Var

(
1

K

K∑
k=1

gk

)
≤ σ2

K
+

K − 1

K
pσ2, (5)

where p = E[pkl], k ̸= ℓ is the expectation of pair-wise
correlation.

All crops share the same underlying image, so p ̸= 0. The
ideal σ2/K decay is therefore tempered by the correla-
tion term p̄σ2. Empirically, averaging a modest number
(K = 10) of almost-orthogonal gradients still yields benefit,
since the uncorrelated component of the variance shrinks
as 1/K. Simultaneously, the optimizer leverages multiple
diverse transformations per update, with minimal interfer-
ence among almost orthogonal gradients. Fig. 3a illustrates
an accelerated convergence with K = 10, with margin
improvement provided by K = 100.

This averaging also alleviates the known translation sensi-
tivity of ViTs. As shown in Fig. 3b, using two crop sets
yields noticeably higher gradient consistency than the single-
crop alignment in M-Attack. In MCA, high-activity regions
remain stable (upper left and center right), while the single-
crop case shifts focus from center right to lower left. As a
result, gradient similarity across iterations increases from
near zero in M-Attack to around 0.2 (Fig. 2b).

3.4. Improved Sampling Quality via Auxiliary Target
Alignment

Selecting a representative target embedding y ∈ Y is chal-
lenging because the underlying distribution Y is not observ-
able. M-Attack mitigates this by seeding at the unaltered
target embedding f(Xtar) and exploring its vicinity with
transformed views f(Tt(Xtar)) thereby sketching a locally
semantic manifold that serves as a proxy for Y . However,
the exploration–exploitation trade-off remains problematic.

Radical transformations leap too far, dragging y outside the
genuine target region; conservative transformations, while
semantically faithful, barely shift the embedding, leaving
the optimization starved of informative signal.

To stabilize this process, we introduce P auxiliary images
{X(p)

aux}Pp=1 as an auxiliary set that acts as additional an-
chors, collectively forming a richer sub-manifold of aligned
embeddings. During each update, we apply a mild random
transformation T̃ ∼ D̃ to every anchor, nudging the ensem-
ble in a coherent yet restrained manner and thus providing
low-variance, information-rich gradients for optimization.
Let y0 = f(T̂0(Xtar)), ỹp = f(T̃p(X(p)

aux)) denote sampled
semantics in one iteration. The objective L̂ in Equ. (4)
becomes

L̂ =
1

K

n∑
k=1

[
L(f(Tk(Xsou)), y0)

+
λ

P

P∑
p=1

L(f(Tk(Xsou)), ỹp)
]
,

(6)

where λ ∈ [0, 1] interpolates between the original target and
its auxiliary neighbors. λ = 0 reduce to M-Attack local-
local matching with single target. ATA trade-off exploration
(auxiliary diversity) and exploitation (main-target fidelity),
providing low-variance, semantics-preserving updates. The
auxiliary set can be built in various ways, e.g., via image-
image retrieval or diffusion methods. We now theoretically
analyze ATA with three mild assumptions:

Assumption 3.2 (Lipschitz surrogate). Surrogate f is L-
continuous: ∥f(y)− f(x)∥ ≤ L∥y − x∥.
Assumption 3.3 (Bounded Auxiliary Data). For auxiliary
data X

(p)
aux retrieved via semantic similarity to a target Xtar,

we have: E[∥f(X(p)
aux)− f(Xtar)∥] ≤ δ (justification in the

appendix).

Assumption 3.4 (Bounded transformation). Random trans-
formation T ∼ Dαf has bounded pixel-level distortion:
E[∥T (X)−X∥] ≤ α

Theorem 3.5. Let T ∼ Dα denote the transformation used
in M-Attack, and T̃ ∼ Dα̃ with α̃ ≪ α the transforma-
tion in M-Attack-V2. Define embedding drift of transfor-
mation T applied to X on model f as: ∆drift(T ;X) :=
ET [∥f(T (X))− f(Xtar)∥]. Then, we have:

∆drift(T ;Xtar) ≤ Lα

∆drift(T̃ ;X(p)
aux) ≤ Lα̃+ δ.

(7)

Specifically, the term Lα captures the inherent asymmetry
caused by transformations in pixel space, requiring the mul-
tiplier L to map pixel-level perturbations into embedding
space. In contrast, the auxiliary data directly operates in em-
bedding space, leading to a manageable bound δ. Practically,
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Figure 3. Comparison of: a) different trajectories against different K; b) gradient pattern of single crop alignment against multi-crop
alignment (MCA). The gradient pattern of ResNet 50 remains consistent when large pixels are overlapped, while the gradient pattern of
ViTs changes dramatically. MCA helps to smooth out this impact.

estimating δ is notably easier than estimating Lα. Lower
δ inherently indicates better semantic alignment, allowing
M-Attack-V2 to operate effectively under reduced distor-
tion (α̃ ≪ α). Thus, ATA strategically allocates its shift
budget toward more meaningful exploration via δ, achieving
a sweet spot between exploration and exploitation.

Computation Analysis. Each iteration back-propagates
through the K source crops and only forward-propagates the
P auxiliary targets. Since a backward pass is roughly twice
as expensive as a forward pass, the per-iteration complexity
is O

(
K (3 + P )

)
, doubling overhead when P = 3. Note

that the additional overhead is parallelizable. The detailed
analysis and comparison are in the appendix.

3.5. Patch Momentum with Built-in Replay Effect

Momentum, introduced in MI-FGSM (Dong et al., 2018),
is widely adopted for transferability. Define the momentum
buffer as: mr = β1mr−1 + (1 − β1)∇x̂sL̂r(x̂

s), where
β1 ∈ [0, 1) is the first-order momentum coefficient and
∇x̂sL̂r(x̂

s) is our MCA-ATA-estimated gradient gr at iter-
ation r. Under the local-matching view, this mechanism can
be reinterpreted as formulating a streaming MCA to enforce
temporal consistency across gradient directions in the space
of random crops. Unrolling the EMA for pixel k exposes an
alternative interpretation:

mi(k) = (1− β)

i∑
j=0

βj 1{k ∈Mi−j}gi−j(k), (8)

where Mi denotes the pixel indices included in iteration
i, mi(k) and gi(k) respectively denotes momentum and
gradient for pixel k. Each crop involving pixel k is there-
fore replayed in future iterations with geometrically de-
caying weight, allowing rarely sampled regions (such as
corners) to persist long enough to combat the gradient star-
vation. Spike-shaped gradients are further moderated by
the Adam-style (Kingma, 2014) second moment, vr =
β2vr−1 + (1 − β2)g

2
r , whose scaling effect is essential in

our empirical study. The momentum does not directly im-
prove gradient similarity but continuously re-injects histor-
ical crops across patches, effectively maintaining gradient
directionality across local perturbation manifolds. We there-
fore term it Patch Momentum to distinguish.

The whole procedure, combining MCA, ATA, and PM, is
detailed in Alg. 1. We use a different color to differentiate
between M-Attack-V2 and M-Attack. We use PGD (Madry
et al., 2018) with ADAM (Kingma, 2014) for line 12. Ap-
pendix presents analogous results for variants.

4. Experiments
4.1. Experimental Setup

Metrics. We adopt the evaluation protocol of M-Attack,
reporting the Attack Success Rate (ASR) via GPTScore and
the Keywords Matching Rate (KMR) at three thresholds
{0.25, 0.5, 1.0}, denoted as KMRa, KMRb, and KMRc (Li
et al., 2025). KMR measures semantic alignment using
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Figure 4. Visualization of adversarial samples under ϵ = 8.

Algorithm 1: M-Attack-V2
Input :clean image Xclean; primary target Xtar;

auxiliary set A =
{
X

(p)
aux

}P

p=1
; patch

ensemble+ Φ+ = {ϕj}mj=1; iterations n, step
size α, perturbation budget ϵ; number of crops
K, auxiliary weight λ (0 ≤ λ ≤ 1)

Output :adversarial image Xadv

1 Xadv ← Xclean

2 for i = 1 to n do
3 Draw K transforms {Tk}Kk=1 ∼ D, g ← 0
4 for k = 1 to K (vectorizable) do
5 Draw {T̃p}Pp=0 ∼ D̃

6 for j = 1 to m do
7 y0 = f(T̃p(Xtar)),

yp = f(T̃p(X(p)
aux)), p = 1, . . . , P

8 Compute L̂k = (fϕj (Tk(Xsou)), y0) +
λ
P

∑P
p=1 L(fϕj

(Tk(x)), ỹp)
9 g ← g + 1

Km∇XsouL̂k

10 end
11 end
12 Update Xadv based on g with Patch Momentum
13 end
14 return Xadv

human-annotated keywords, considering a match successful
if the rate exceeds threshold x. The evaluation follows
M-Attack exactly.

Surrogate candidates. We follow surrogate selections
from prior ensemble-based methods (Zhang et al., 2024;
Dong et al., 2023a; Guo et al., 2024; Li et al., 2025). Our
candidate pool covers CLIP variants (CLIP-B/16, B/32,
L/14, CLIP†-G/14, CLIP†-B/32, CLIP†-H/14, CLIP†-B/16,
CLIP†-BG/14), DinoV2 (Oquab et al., 2023) (Small, Base,
Large), and BLIP-2 (Li et al., 2023)). Victim models
and dataset. We evaluate state-of-the-art commercial
MLLMs: GPT-4o/o3/5, Claude-3.7/4.0 (extended), and

Gemini-2.5-Pro-Preview (Team et al., 2023). Clean im-
ages are drawn from the NIPS 2017 Adversarial Attacks and
Defenses Competition dataset (Kurakin et al., 2018a). Fol-
lowing SSA-CWA (Dong et al., 2023b) and M-Attack (Li
et al., 2025), we randomly sample 100 images, retrieving
auxiliary sets from the COCO training set (Lin et al., 2014)
using CLIP-B/16 embedding similarity. Further results on
a 1k-image subset are in the appendix, along with Hug-
gingFace model identifiers. All the BLIP2 (Li et al., 2023)
variants on Huggingface share the same vision encoder.
Therefore, we use only one. The milder target transfor-
mation includes random resized crop ([0.9, 1.0]), random
horizontal flip (p = 0.5), and random rotation (±15◦).

Hyperparameters. Unless noted, perturbations are
bounded by ℓ∞ with ϵ = 16 and optimized for 300 steps.
We set the step size to α = 0.75 for Claude and α = 1.0 for
all other methods, mirroring M-Attack. For M-Attack-V2,
α = 1.275, β1 = 0.9, β2 = 0.99 for momentum, K = 10,
P = 2, and λ = 0.3 for MCA and ATA. Ablation of these
parameters is presented in the appendix.

4.2. Selection of Surrogate Model

Ensembling multiple surrogate models is standard for im-
proving black-box transferability, and recent work primarily
designs advanced aggregation schemes over a small set of
surrogates (Zhang et al., 2024; Guo et al., 2024). In con-
trast, we begin with a much larger candidate pool and find
that which models are included already has a substantial
impact: pre-selecting a few strong and complementary sur-
rogates yields clear gains, even with plain averaging. We
do not propose a novel aggregation rule; instead, we study
a practical large-pool selection strategy that has been less
studied and reported before but can serve as the very first
stage of a complicated ensemble (pre-select useful candi-
dates, then optionally apply more sophisticated aggregation).
Concretely, we first profile embedding-level transferability
across all candidates (Tab. 3), which shows that cross-model
transfer, especially cross-patch-size transfer, is challenging.
Guided by this, we retain only models that (i) perform well
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Table 1. Comparison of attack methods on three black-box commercial LVLMs. †: pre-trained on LAION (Schuhmann et al., 2022).

Method Model GPT-5 Claude 4.0-thinking Gemini 2.5-Pro Imperceptibility

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR ℓ1 ↓ ℓ2 ↓

AttackVLM (Zhao et al., 2023)
B/16 0.08 0.03 0.02 0.05 0.03 0.00 0.00 0.00 0.08 0.04 0.00 0.00 0.034 0.040
B/32 0.07 0.05 0.04 0.02 0.03 0.03 0.00 0.01 0.09 0.05 0.00 0.02 0.036 0.041

Laion† 0.02 0.01 0.00 0.03 0.02 0.01 0.00 0.00 0.09 0.05 0.00 0.01 0.035 0.040

AdvDiffVLM (Guo et al., 2024) Ensemble 0.04 0.02 0.01 0.01 0.04 0.01 0.01 0.01 0.03 0.01 0.00 0.00 0.064 0.095
SSA-CWA (Dong et al., 2023a) Ensemble 0.08 0.04 0.00 0.08 0.03 0.02 0.01 0.05 0.05 0.03 0.01 0.08 0.059 0.060
AnyAttack (Zhang et al., 2024) Ensemble 0.09 0.03 0.00 0.06 0.05 0.03 0.00 0.01 0.35 0.06 0.01 0.34 0.048 0.052
FOA-Attack (Jia et al., 2025) Ensemble 0.90 0.67 0.23 0.94 0.13 0.09 0.00 0.13 0.61 0.80 0.15 0.86 0.031 0.036
M-Attack (Li et al., 2025) Ensemble 0.89 0.65 0.25 0.98 0.12 0.03 0.00 0.08 0.81 0.57 0.15 0.83 0.030 0.036

M-Attack-V2 (Ours) Ensemble 0.92 0.79 0.30 1.00 0.27 0.17 0.04 0.30 0.87 0.72 0.22 0.97 0.038 0.044

BLIP 2/14 CLIP-B/16CLIP-L/14 DinoV2-base/14 Clip-B/32 Clip-Laion-B/32Clip-Laion-G/14

Figure 5. Comparison of two types of attention maps. Left: attention map that sparsely separates into different regions; right: attention
map that focuses on the main object.

Table 2. Comparison on open-source LVLMs (Qwen-2.5-VL and
LLaVA-1.5). Higher KMRa/b/c and ASR are better.

Method Qwen-2.5-VL LLaVA-1.5

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

AttackVLM 0.12 0.04 0.00 0.01 0.11 0.03 0.00 0.07
SSA-CWA 0.36 0.25 0.04 0.38 0.29 0.17 0.04 0.34
AnyAttack 0.53 0.28 0.09 0.53 0.60 0.32 0.07 0.58

FOA-Attack 0.83 0.61 0.20 0.91 0.94 0.75 0.29 0.95
M-Attack 0.80 0.65 0.17 0.90 0.85 0.59 0.20 0.95

M-Attack-V2 0.87 0.67 0.27 0.95 0.96 0.83 0.29 0.96

in Tab. 3 and (ii) span diverse patch sizes to capture com-
plementary inductive biases. A small ablation over these
filtered models (see in the appendix) yields our final en-
semble, Patch Ensemble+ (PE+), comprising CLIP†-G/14,
CLIP-B/16, CLIP-B/32, and CLIP†-B/32. We treat PE+ as
an efficient, sparse pre-selection that can be used directly
or further plugged into aggregation methods. Qualitative at-
tention maps offer an intuitive explanation: selected models
consistently focus on the main object, whereas discarded
ones tend to spread attention over background regions, sug-
gesting that emphasizing core semantic content is more
transferable than dispersed, model-specific patterns.

4.3. Evaluation Across LVLMs and Settings

Transferability across LVLMs. Tab. 1 illustrates the supe-
riority of our M-Attack-V2 compared to the other black-box

LVLM attack method with Tab. 2 on open-source models.
Our method outperforms others by a large margin, includ-
ing M-Attack. On GPT-5 our M-Attack-V2 even achieves
100% ASR and 97% ASR on Gemini-2.5, with ASR on
Claude 4.0-extended further improved by 22%, which is
almost impossible for M-Attack to attack. There is also
a notable improvement on the KMR, indicating that our
method generates a perturbation that targets the semantics
more effectively, thus more recognizable by the target black-
box model. Note that these improvements are accompanied
by a slight increase in the perturbation norms for l1 and l2.
Previous l1 and l2 norms are caused by insufficient optimiza-
tion through near-orthogonal gradients. Our M-Attack-V2
mitigates this issue, exploring more sufficiently inside the
l∞ ball. Thus, it slightly increases the perturbation magni-
tude while keeping the visual appearance almost unchanged.
Fig. 4 shows representative adversarial examples. Recogniz-
ing that the raw ℓp norm may not translate into human im-
perceptibility, we further evaluate the human imperceptibil-
ity in user studies reported in the appendix, showing nearly
identical performance between M-Attack and M-Attack-V2,
which consistently outperform all other methods.

Performance under varying budgets. Fig. 6 compares per-
formance under varying optimization budgets (total steps).
Our method converges faster, approaching optimal results
within 300 steps, whereas M-Attack requires an additional
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Table 3. Comparison of embedding transferability over 1k images. MCA/ATA excluded to show standalone performance. C/D =
CLIP/DinoV2. Gray denotes selected models.

Surrogate C−L/14 C†−L/14 D−S/14 D−B/14 D−L/14 C−B/16 C†−B/16 C−B/32 C†−B/32 BLIP2 Avg/14 Avg/16 Avg/32 Avg/All

C−L/14 N/A 0.40 0.10 0.13 0.12 0.45 0.40 0.34 0.24 0.48 0.25 0.42 0.29 0.30
C†−L/14 0.44 N/A 0.24 0.24 0.21 0.55 0.57 0.37 0.33 0.61 0.35 0.56 0.35 0.39
D−S/14 0.25 0.39 N/A 0.45 0.38 0.41 0.45 0.32 0.25 0.46 0.39 0.43 0.28 0.37
D−B/14 0.29 0.36 0.33 N/A 0.51 0.37 0.39 0.31 0.23 0.47 0.39 0.38 0.27 0.36
D−L/14 0.26 0.31 0.12 0.32 N/A 0.31 0.34 0.30 0.21 0.42 0.29 0.33 0.26 0.29
C−B/16 0.44 0.43 0.21 0.18 0.13 N/A 0.53 0.37 0.27 0.51 0.32 0.53 0.32 0.34
C†−B/16 0.43 0.51 0.22 0.21 0.15 0.57 N/A 0.39 0.34 0.52 0.34 0.57 0.36 0.37
C−B/32 0.37 0.43 0.21 0.11 0.09 0.55 0.53 N/A 0.49 0.46 0.28 0.54 0.49 0.36
C†−B/32 0.31 0.49 0.27 0.18 0.12 0.53 0.61 0.58 N/A 0.50 0.31 0.57 0.58 0.40
BLIP2 0.39 0.43 0.15 0.20 0.26 0.45 0.43 0.33 0.25 N/A 0.29 0.44 0.29 0.32

Table 4. Effect of removing each component. Numbers below each
value denote the change relative to the full model (first row). ✗
marks the component(s) disabled.

Component Gemini 2.5-Pro Claude 3.7-extended

MCA ATA PM KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

0.87 0.72 0.22 0.97 0.56 0.32 0.11 0.67

✗ 0.85
↓ 0.02

0.70
↓ 0.02

0.21
↓ 0.01

0.92
↓ 0.05

0.52
↓ 0.04

0.35
↑ 0.03

0.08
↓ 0.03

0.66
↓ 0.01

✗ 0.85
↓ 0.02

0.68
↓ 0.04

0.21
↓ 0.01

0.93
↓ 0.04

0.55
↓ 0.01

0.22
↓ 0.10

0.10
↓ 0.01

0.62
↓ 0.05

✗ ✗ 0.82
↓ 0.05

0.62
↓ 0.10

0.22
–

0.93
↓ 0.04

0.44
↓ 0.12

0.31
↓ 0.01

0.08
↓ 0.03

0.62
↓ 0.05

✗ 0.82
↓ 0.05

0.71
↓ 0.01

0.21
↓ 0.01

0.96
↓ 0.01

0.52
↓ 0.04

0.32
↓ 0.00

0.10
↓ 0.01

0.66
↓ 0.01

Table 5. Results of M-Attack-V2 on the vision reasoning model.

Model KMRa KMRb KMRc ASR

GPT-o3 (o3-2025-04-16) 0.91 0.71 0.23 0.98

200 steps, suggesting slower convergence. At fewer steps
(100 and 200), M-Attack exhibits a notable performance
drop. Meanwhile, our method maintains stable ASR and
KMRb due to a more coherent optimization trajectory than
M-Attack, which is more sensitive to random cropping and
aggressive target transformations. Additional results on
varing ϵ is presented in the appendix.

Robustness Against Vision-Reasoning Models. Reason-
ing in text modality does not extend to alter information
from the vision backbone. Instead, we further evaluate
M-Attack-V2 against GPT-o3, a model enhanced with vi-
sual reasoning capabilities. As shown in Tab. 5, GPT-o3
exhibits slightly better robustness than GPT-4o. However,
the limited improvement suggests that its reasoning module
is not explicitly trained to detect adversarial manipulations
in the image. Thus, even after reasoning, GPT-o3 remains
susceptible to M-Attack-V2. The reasoning process is pre-
sented in the appendix, where it shows certain degrees of
suspect in some images, and further utilize python tools for
zooming.

4.4. Ablation Study

Tab. 4 isolates the effect of each module beyond PE+

(GPT-4o is omitted due to negligible differences). On both
Gemini-2.5-Pro and Claude-3.7-extended, activating MCA
or ATA alone delivers ∼5% gains on average, most visi-
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Figure 6. Comparison under different step budgets.

ble in ASR and KMRb, with consistent improvements on
KMRa/KMRc. Additionally, removing PM yields only a
minor drop in performance, suggesting it is complementary
rather than fundamental. Overall, MCA and ATA consti-
tute the principal mechanisms for variance reduction. At the
same time, PM serves as a low-cost memory that extends the
effective momentum horizon via a biased gradient, further
suppressing variance and adding robustness.

5. Conclusion
In this work, we diagnosed M-Attack’s unstable gradients
as arising from high variance and overlooked asymmet-
ric matching, and address them with a principled gradient-
denoising framework. Multi-Crop Alignment (MCA), Aux-
iliary Target Alignment (ATA), and Patch Momentum (PM),
together with a refined surrogate ensemble (PE+), form
our proposed framework, which achieves state-of-the-art
transfer-based black-box attacks on LVLMs. We hope these
insights help achieve more stable and transferable adversar-
ial optimization under realistic black-box constraints.
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Impact Statement
This work strengthens transfer-based black-box attacks on
large vision–language models, improving the ability to
stress-test real-world multimodal systems used in assistants,
search, and content generation. By revealing key instabili-
ties in local-level matching and proposing simple gradient-
denoising fixes, our methods can help researchers and prac-
titioners build more reliable defenses, develop better ro-
bustness benchmarks, and identify failure modes before
deployment. At the same time, more effective attacks can
be misused to bypass safety filters, induce targeted halluci-
nations, or manipulate model outputs in high-stakes settings.
To mitigate misuse, we have emphasized responsible disclo-
sure, i.e., evaluate primarily on controlled benchmarks and
public models, and will make full code/data/models publicly
available in a way that supports reproducibility and defense
research (e.g., including detection/mitigation baselines and
clear guidance on safe use of our optimized generations),
while avoiding instructions or configurations that lower the
barrier to real-world harm.
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A. Additional Details for Theoretical Analysis
A.1. Proof for Theorem 1

This section provides detailed proof of the upper bound in Equ. (5). For variance, we have

Var(ĝK) := E∥ĝK − µ∥2

= E

∥∥∥∥∥ 1

K

K∑
k=1

(gk − µ)

∥∥∥∥∥
2

=
1

K2

K∑
k=1

K∑
ℓ=1

E[(gk − µ)⊤(gℓ − µ)]

=
1

K2


K∑

k=1

E∥gk − µ∥22︸ ︷︷ ︸
Kσ2

+

2
∑

1≤k<ℓ≤K

E[⟨gk − µ, gℓ − µ⟩]︸ ︷︷ ︸
cross terms



(9)

The diagonal part is reduced to the mean. We now provide an upper bound for the cross terms. Recall pkℓ =
⟨gk−µ,gℓ−µ⟩

∥gk−µ∥2∥gℓ−µ∥2 ,
we have

E[⟨gk − µ, gℓ − µ⟩] = E [ρkℓ∥gk − µ∥2∥gℓ − µ∥2] . (10)

Since all crops share the same marginal distribution, i.e. E∥gk − µ∥2 = E∥gℓ − µ∥2 = σ, applying the Cauchy-Schwarz
inequality to Equ. (10) yields

E[⟨gk − µ, gℓ − µ⟩] ≤ E[ρkℓ]
√

E∥gk − µ∥22
√
E∥gℓ − µ∥22

= ρ̄σ2,
(11)

where p is E[pkℓ], k ̸= ℓ. Plugging this into the double sum term yields∑
1≤k<ℓ≤K

E [⟨gk − µ, gℓ − µ⟩] ≤ K(K − 1)

2
ρ̄σ2. (12)

The K(K−1)
2 appears since there are total K(K−1)

2 terms for
∑

k<ℓ. Thus substituting Equ. (12) back to the cross item part
in the Equ. (9) yields

Var(ĝK) ≤ 1

K2

(
Kσ2 +K(K − 1)pσ2

)
=

1

K
σ2 +

K − 1

K
pσ2

(13)

Therefore, we have the upper bound provided in the Sec. 3.3.

A.2. Proof of Theorem 2

We begin with the drift analysis for M-Attack:

∆drift(T ;Xtar) = ET ∼Dα[∥f(T (Xtar))− f(Xtar)∥]
≤ L · ET ∼Dα[∥T (Xtar)−Xtar∥]
≤ Lα.

(14)
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Algorithm 2: M-Attack-V2 (Adam variant)

Input :clean image Xclean; primary target Xtar; auxiliary set A = {X(p)
aux}Pp=1; patch ensemble+ Φ+ = {ϕj}mj=1;

iterations n, step size α, perturbation budget ϵ; Adam β1, β2, η; number of crops K, auxiliary weight λ
Output :adversarial image Xadv

1 Xadv←Xclean, m←0, v←0
2 for i = 1 to n do
3 Draw K transforms {Tk}Kk=1∼D
4 g←0 // accumulate over crops
5 for k = 1 to K do

// — crop loop —
6 Draw {T̃p}Pp=0∼D̃
7 for j = 1 to m do
8 y0 = f(T̃0(Xtar))

9 yp = f(T̃p(X(p)
aux)), p = 1, . . . , P

10 L̂k=L
(
fϕj (Tk(Xadv)), y0

)
+ λ

P

∑P
p=1 L

(
fϕj (Tk(Xadv)), yp

)
11 g←g + 1

Km∇Xadv
L̂k

12 end
13 end

// — Adam update —
14 m←β1m+ (1− β1)g
15 v←β2v + (1− β2)g

⊙2

16 m̂←m/(1− βi
1);

17 v̂←v/(1− βi
2)

18 Xadv←clipXclean,ϵ

(
Xadv + α m̂/(

√
v̂ + η)

)
19 end
20 return Xadv

Next, we analyze the drift for M-Attack-V2 using the triangle inequality and the above assumptions:

∆drift(T̃ ;X(p)
aux) = ET̃ ∼Dα̃

[
∥f(T̃ (X(p)

aux))− f(Xtar)∥
]

≤ ET̃
[
∥f(T̃ (X(p)

aux))− f(X(p)
aux)∥+

∥f(X(p)
aux)− f(Xtar)∥

]
= ET̃

[
∥f(T̃ (X(p)

aux))− f(X(p)
aux)∥

]
+

E
[
∥f(X(p)

aux)− f(Xtar)∥
]

≤ LET̃
[
∥T̃ (X(p)

aux)−X(p)
aux∥

]
+ δ

≤ Lα̃+ δ .

Thus, we have completed the proof of Theorem 3.5.

A.3. Justification for Assumptions

Assumption 3.3 is derived from the retrieval mechanism for auxiliary data. Specifically, X(p)
aux represents the p-th closest

embedding to the target Xtar from a database D, defined explicitly by:

X(p)
aux ∈ arg topP

{
X ∈ D :

f(X)⊤f(Xtar)

|f(X)||f(Xtar)|

}
, (15)

where topP denotes selecting the top-P nearest neighbors according to cosine similarity. Given that embeddings f(X) are
typically normalized, semantic closeness naturally bounds the expected distance between f(X

(p)
aux) and f(Xtar) by δ, thus

14
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Algorithm 3: M-Attack-V2 (MI-FGSM variant)

Input :clean image Xclean; primary target Xtar; auxiliary set A = {X(p)
aux}Pp=1; patch ensemble+ Φ+ = {ϕj}mj=1; iterations n,

step size α, perturbation budget ϵ; momentum decay γ; number of crops K, auxiliary weight λ
Output :adversarial image Xadv

1 Xadv←Xclean, µ←0
2 for i = 1 to n do
3 Draw K transforms {Tk}Kk=1∼D
4 g←0
5 for k = 1 to K do
6 Draw {T̃p}Pp=0∼D̃
7 for j = 1 to m do
8 y0 = f(T̃0(Xtar))

9 yp = f(T̃p(X(p)
aux)), p = 1, . . . , P

10 L̂k=L
(
fϕj (Tk(Xadv)), y0

)
+ λ

P

∑P
p=1 L

(
fϕj (Tk(Xadv)), yp

)
11 g←g + 1

Km
∇Xadv L̂k

12 end
13 end

// — MI-FGSM update —

14 µ←γ µ+
g

∥g∥1
15 Xadv←clipXclean,ϵ

(
Xadv + α sign(µ)

)
16 end
17 return Xadv

validating Assumption 3.3. In such a case, to estimate δ, use 2
(
1− f(X

(P )
aux)⊤f(Xtar)

)
B. More Details on Our Algorithm
Alg. 2 and Alg. 3 provide detailed update rule of line 13 in Alg. 1. Fig. 7 provides a comparison between the entire procedure
of M-Attack and our M-Attack-V2 under the local-matching framework. Notably, M-Attack utilizes a radical crop on the
target image, risking unrelated or broken semantics for the source image to align. Our ATA anchors more points inside the
semantic manifold (blue), and provides a mild transformation to provide a coherence sampling from the target semantic
manifold.

C. More Details of Experimental Setup
The experiment’s seed is 2023. It is conducted on a Linux platform (Ubuntu 22.04) with 6 NVIDIA RTX 4090 GPUs. The
temperatures of all LLMs are set to 0. The threshold of the ASR is set to 0.3, following M-Attack. Tab. 9 provides a map
from model names in this paper to their identifiers in HuggingFace. We use GPT-5-thinking-low (setting reasoning effort to
low in the API) for all results in the main paper, with results on other reasoning budgets presented in the Appx. G.3

D. Full Process of Surrogate Model Selection
This section details the process of selecting our final ensemble, PE+. Exhaustively testing all model combinations is
computationally infeasible, so we employ a heuristic-driven approach. We begin by excluding DiNO-large and BLIP2 due to
their poor transferability, as shown in Tab. 3. Our initial experiments focus on evaluating the effectiveness of homogeneous
ensembles—comprising models with the same patch size—versus mixed patch size ensembles. Specifically, we construct
five ensembles: (1) patch-14 CLIP (CLIP-L/14, CLIP†-G/14), (2) patch-14 DiNOv2 (Dino-base, Dino-large), (3) patch-16
CLIP (CLIP-B/16, CLIP†-B/16), and (4) patch-32 CLIP (CLIP-B/32, CLIP†-B/32). Results are presented in Tab. 7. These
results reveal that the patch-32 CLIP ensemble performs best on Claude 3.7, while GPT-4o and Gemini 2.5 Pro favor models
with patch sizes 14 and 16. This supports the findings in Sec. 4.2: although using a fixed patch size can mitigate architectural
bias, it still inherits the intrinsic bias of the patch size itself.

To address this, we adopt a cross-patch size strategy. Starting from the patch-32 CLIP ensemble, due to its strong performance
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Figure 8. Visualization of adversarial samples under ϵ = 16.

on Claude and consistent transferability across patch-16 and patch-32 models. We incrementally incorporate one model
each from patch sizes 14 and 16. We evaluate various combinations, with results summarized in Tab. 8. The resulting
ensemble, PE+, achieves the most balanced performance, ranking first on 7 metrics and a close second on 3 others, across
12 evaluation metrics.

E. More Ablation Study
E.1. Ablation Study for Step Size

This section provides an ablation study for the step size parameter α to view its impact on the performance. Overall,
selecting α ∈ [0.5, 1.0] provides better performance for SSA-CWA, M-Attack. Our M-Attack-V2 prefer stepsize at 1.275,
since it adopts ADAM as optimizer.

16



Pushing the Frontier of Black-Box LVLM Attacks via Fine-Grained Detail Targeting

Table 6. Ablation study on the impact of perturbation budget (ϵ).

ϵ Method GPT-4o Claude 3.7-thinking Gemini 2.5-Pro Imperceptibility

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR ℓ1 ↓ ℓ2 ↓

4

AttackVLM (Zhao et al., 2023) 0.08 0.04 0.00 0.02 0.04 0.01 0.00 0.00 0.10 0.04 0.00 0.01 0.010 0.011
SSA-CWA (Dong et al., 2023a) 0.05 0.03 0.00 0.03 0.04 0.01 0.00 0.02 0.04 0.01 0.00 0.04 0.015 0.015
AnyAttack (Zhang et al., 2024) 0.07 0.02 0.00 0.05 0.05 0.05 0.02 0.06 0.05 0.02 0.00 0.10 0.014 0.015
M-Attack (Li et al., 2025) 0.30 0.16 0.03 0.26 0.06 0.01 0.00 0.01 0.24 0.14 0.02 0.15 0.009 0.010

M-Attack-V2 (Ours) 0.59 0.34 0.10 0.58 0.06 0.02 0.00 0.02 0.48 0.33 0.07 0.38 0.012 0.013

8

AttackVLM (Zhao et al., 2023) 0.08 0.02 0.00 0.01 0.04 0.02 0.00 0.01 0.07 0.01 0.00 0.01 0.020 0.022
SSA-CWA (Dong et al., 2023a) 0.06 0.02 0.00 0.04 0.04 0.02 0.00 0.02 0.02 0.00 0.00 0.05 0.030 0.030
AnyAttack (Zhang et al., 2024) 0.17 0.06 0.00 0.13 0.07 0.07 0.02 0.05 0.12 0.04 0.00 0.13 0.028 0.029
M-Attack (Li et al., 2025) 0.74 0.50 0.12 0.82 0.12 0.06 0.00 0.09 0.62 0.34 0.08 0.48 0.017 0.020

M-Attack-V2 (Ours) 0.87 0.69 0.20 0.93 0.23 0.14 0.02 0.22 0.72 0.49 0.21 0.77 0.023 0.023

16

AttackVLM (Zhao et al., 2023) 0.08 0.02 0.00 0.02 0.01 0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.036 0.041
SSA-CWA (Dong et al., 2023a) 0.11 0.06 0.00 0.09 0.06 0.04 0.01 0.12 0.05 0.03 0.01 0.08 0.059 0.060
AnyAttack (Zhang et al., 2024) 0.44 0.20 0.04 0.42 0.19 0.08 0.01 0.22 0.35 0.06 0.01 0.34 0.048 0.052
M-Attack (Li et al., 2025) 0.82 0.54 0.13 0.95 0.31 0.21 0.04 0.37 0.81 0.57 0.15 0.83 0.030 0.036

M-Attack-V2 (Ours) 0.91 0.78 0.40 0.99 0.56 0.32 0.11 0.67 0.87 0.72 0.22 0.97 0.038 0.044

Table 7. Ablation on two-model surrogate sets. Bold numbers are the best in each column; underlined numbers are the second-best.

Variant Surrogate Set (2 models)
GPT-4o Claude 3.7-extended Gemini 2.5-Pro

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

Pair1 Dino-B, Dino-S 0.84 0.57 0.15 0.91 0.09 0.04 0.00 0.05 0.84 0.53 0.11 0.81
Pair2 L16, B/16 0.86 0.69 0.21 0.96 0.16 0.10 0.01 0.16 0.84 0.59 0.15 0.91
Pair3 L32, B/32 0.76 0.52 0.13 0.79 0.46 0.29 0.06 0.70 0.58 0.37 0.07 0.59
Pair4 G/14, L14 0.86 0.61 0.24 0.94 0.07 0.02 0.00 0.06 0.82 0.64 0.23 0.92

F. Success and Failure Examples
Fig. 9 illustrates typical adversarial samples for successful and failed attacks of M-Attack-V2 across GPT/Claude and
Gemini. In failure cases, the adversarial perturbations show weaker semantic correlation with the target label, whereas in
successful cases, rough shapes of the target (such as trees or animals) can be clearly identified. We also observe that shared
successful target images tend to appear neater and more centralized.

F.1. Ablation Study on MCA and ATA Hyperparameters

Fig. 10(left) shows transferability peaks around K = 10 ∼ 20, beyond which increased stability reduces beneficial noise
regularization. Fig. 10(right) demonstrates larger λ boosts diversity by aligning semantics closer to auxiliary data but
risks impairing semantic accuracy (as measured by KMR). Fig. 11(a,b) indicates minor impacts from P and momentum
coefficient β; setting P = 2 optimizes performance and efficiency, and the default β = 0.9 consistently yields robust results.

Table 8. Ablation on surrogate-set selection. Each row swaps one model in or out of a four-model ensemble. The fully grey PE+ line is
our final patch-diverse surrogate set (CLIP†-G/14, CLIP-B/16, CLIP-B/32, CLIP†-B/32). Bold numbers denote the best score in each
metric column across all variants, underline denote second best with neglectable gap of 0.01

Variant Surrogate Set
GPT-4o Claude 3.7-extended Gemini 2.5-Pro

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

PE1 B/16, B/32, L32, L16 0.87 0.65 0.26 0.99 0.54 0.32 0.07 0.68 0.80 0.57 0.16 0.90
PE2 Dino-B, B/32, L32, G/14 0.87 0.69 0.28 0.97 0.56 0.37 0.09 0.65 0.88 0.71 0.22 0.93
PE3 L16, B/32, L32, G/14 0.85 0.65 0.23 0.99 0.57 0.40 0.09 0.73 0.84 0.61 0.19 0.93
PE4 B/16, B/32, L32, Dino-B 0.89 0.67 0.19 0.98 0.55 0.41 0.07 0.63 0.87 0.67 0.23 0.96
PE5 B/16, B/32, L32, Dino-S 0.90 0.72 0.25 0.97 0.48 0.33 0.08 0.59 0.83 0.63 0.17 0.90

PE+ (Ours) B/16, B/32, L32, G/14 0.91 0.78 0.40 0.99 0.56 0.32 0.11 0.67 0.87 0.72 0.22 0.97
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Table 9. Surrogate models and their corresponding HuggingFace identifier in our main paper.

Surrogate (paper notation) Implementation (HuggingFace identifier)

CLIP†-B/32 (Ilharco et al., 2021; Schuhmann et al., 2022) laion/CLIP-ViT-B-32-laion2B-s34B-b79K
CLIP†-H/14 (Ilharco et al., 2021; Schuhmann et al., 2022) laion/CLIP-ViT-H-14-laion2B-s32B-b79K
CLIP-L/14 (Radford et al., 2021) openai/clip-vit-large-patch14
CLIP†-B/16 (Ilharco et al., 2021; Schuhmann et al., 2022) laion/CLIP-ViT-B-16-laion2B-s34B-b88K
CLIP†-BG/14 (Ilharco et al., 2021; Schuhmann et al., 2022) laion/CLIP-ViT-bigG-14-laion2B-39B-b160k

Dino-Small (Oquab et al., 2023) facebook/dinov2-small
Dino-Base (Oquab et al., 2023) facebook/dinov2-base
Dino-Large (Oquab et al., 2023) facebook/dinov2-large

BLIP-2 (2.7 B) (Li et al., 2023) Salesforce/blip2-opt-2.7b

Adversarial 
Sample

Perturbation

Target

Success Mode (GPT/Gemini/Claude) Failure Mode (GPT/Gemini/Claude)

Figure 9. Success and failure modes of M-Attack-V2 shared by GPT 5/Claude 4.0-extended/Gemini 2.5-Pro.

G. Additional Results
G.1. Additional Results on 1K image

We compare M-Attack and M-Attack-V2 across 1K images to improve statistical stability. We changed the threshold to
multiple values since no additional keywords were added to the 900 images, thereby replacing the KMR with ASR at
different matching levels. Our M-Attack-V2 consistently outperforms M-Attack, demonstrating the superiority of our
proposed strategy.

G.2. Additional Results on FGSM framework

We provide the results of the I-FGSM (Kurakin et al., 2018b) and MI-FGSM (Dong et al., 2018) under our M-Attack
framework as complementary, presented in Tab. 12. Results show that even under the FGSM framework, where the patchy
gradient matter is smoothed by assigning sign(∇L), M-Attack-V2 still benefit from momentum. Moreover, MI-FGSM still
provides results comparable to those of the ADAM version. However, using PGD framework with ADAM optimizer is
generally the better choice to unleash the potential of black-box attack fully since it can better explore in the space while
also reducing scale issue with second-order momentum.

G.3. Additional Results on Other GPT-5 Reasoning Modes

GPT-5 provides four reasoning modes: minimum, low, medium, and high. While the main paper presents results using GPT-
5-thinking-low, additional experiments on other reasoning modes are summarized in Tab. 13. Our proposed M-Attack-V2
consistently achieves superior performance across all modes. Interestingly, providing additional thinking budget generally
enhances model robustness, evidenced by a reduction in ASR and KMR. However, this improvement is not strictly monotonic:
ASR first decreases from 100% (low) to 96% (medium) before slightly rebounding to 99% (high). A similar non-monotonic
trend can also be observed elsewhere in the table.
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Figure 10. ASR and KMRa/KMRb vs. different K and λ.

G.4. Cross-Domain Evaluation on Medical and Overhead Imagery

Beyond the general-domain datasets, we further probe transferability to domains that are notoriously challenging for
closed-source VLMs: chest X-rays and overhead remote sensing. Concretely, we augment the NIPS 2017 adversarial
competition evaluation with images from ChestMNIST, from MedMNIST (Yang et al., 2021) and PatternNet (Li et al.,
2018). We keep the target set unchanged and reuse the same attack budget and optimization hyper-parameters as in the main
experiments. These domains are non-photographic and typically elicit generic captions from off-the-shelf VLMs, making
them a stringent test of cross-domain transfer.

We report KMRa/KMRb/KMRc and ASR (higher is better) on GPT-4o, Claude 3.7, and Gemini 2.5 in Tables 14 and 18.
Across both datasets, M-Attack-V2 consistently surpasses M-Attack and prior baselines. On PatternNet, M-Attack-V2
improves Claude 3.7 ASR from 0.48 to 0.73 (+0.25) and raises GPT-4o KMRa/b/c to 0.83/0.71/0.24. On ChestMNIST, the
gains are even larger on Claude 3.7 (ASR 0.31→ 0.83, +0.52), while M-Attack-V2 also achieves the highest KMRa/b/c on
Gemini 2.5 (0.89/0.76/0.33). The only exception is ChestMNIST ASR on Gemini 2.5, where M-Attack is marginally higher
(0.96 vs. 0.95), despite M-Attack-V2 yielding stronger keyword-match rates.

G.5. Robustness to input–preprocessing defenses

We evaluate two input–preprocessing defenses—JPEG recompression (quality Q=75) and diffusion-based purification
(DiffPure) with denoising budgets t=25 and t=75. As summarized in Table 17, the JPEG results show that M-Attack-V2
remains strong while prior attacks substantially degrade, suggesting resilience to quantization and mild photometric shifts.
DiffPure reduces success rates for all methods; however, M-Attack-V2 preserves a clear margin at t=25 and remains the
most effective even under the aggressive t=75 setting, where purification approaches image regeneration.

G.6. Human Perceptual Study

To evaluate the perceptual stealth of the perturbations beyond static metrics such as the ℓp norm, we conducted two user
studies comparing adversarial samples from M-Attack-V2 and several baseline attacks against clean images.

M-Attack-V2 against Clean Images. Participants were shown 50 images (25 perturbed by M-Attack-V2 and 25 unmodi-
fied) in a random order and asked to label each image as “perturbed” or “clean”. Adversarial images were generated with
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Figure 11. Ablation study on auxiliary set size P and momentum parameter β.

a perturbation budget ϵ = 16 or ϵ = 8. Results, averaged over 10 distinct user groups, are summarized in Table 15. On
average, only 42% of M-Attack-V2 adversarial images are correctly identified as corrupted, meaning that 58% of them pass
the human check even under explicit supervision. We further repeat this study at a smaller perturbation budget ϵ = 8, since
M-Attack-V2 still exceeds other methods by a large margin even under ϵ = 8. As shown in Table 15, the proportion of
adversarial images identified by users drops from 42% to 27.4% when reducing ϵ from 16 to 8, while the confusion between
adversarial and real images also increases, and the error of identifying clean images also increases. These results highlight
the potential threat of M-Attack-V2 in real-world scenarios where human inspection is relied upon.

Comparison across Attack Methods. In a second study, each participant (10 in total) was shown 40 images: 10 adversarial
examples from each of AnyAttack, SSA-CWA, M-Attack-V1, and M-Attack-V2 (again at ϵ = 16). Participants were told
that exactly half of the images were corrupted and asked to select the 20 images they believed were mostly perturbed. This
protocol directly compares the perceptual stealthiness of different attacks. As reported in Table 16, AnyAttack is the most
easily detected method, with 84% of its images identified as perturbed. SSA-CWA is somewhat less detectable (54%),
while M-Attack-V1 and M-Attack-V2 are flagged as perturbed only about 30% of the time, indicating substantially higher
perceptual stealth. Notably, this M-Attack and M-Attack-V2 share a similar portion, showing that the slight differences in
perturbations’ ℓp norm do not necessarily translate to the final human imperceptibility.

H. Computational Cost and Runtime Analysis
This section analyzes the computational cost of M-Attack and related baselines, first in terms of FLOPs and then in terms of
wall-clock runtime.

Let d denote the hidden dimension, dff = 4d the feed-forward expansion, and N the sequence length. In one Transformer
layer, the feed-forward network (FFN) incurs 2Nddff = 8Nd2 FLOPs, while multi-head attention adds 4Nd2 + 4N2d,
giving a per-layer forward cost

M ≜ 12Nd2 + 4N2d.

Since the backward pass is empirically about twice as expensive as the forward pass, a complete forward–backward iteration
for a single VLM requires approximately 3M FLOPs.
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Table 10. Ablation study on the impact of perturbation budget (α).

α Method GPT-4o Claude 3.7-thinking Gemini 2.5-Pro

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

0.25
SSA-CWA (Dong et al., 2023a) 0.08 0.08 0.04 0.10 0.06 0.03 0.00 0.03 0.06 0.03 0.00 0.01

M-Attack (Li et al., 2025) 0.62 0.39 0.09 0.71 0.12 0.03 0.01 0.16 0.55 0.33 0.08 0.55
M-Attack-V2 (Ours) 0.86 0.61 0.21 0.96 0.43 0.28 0.5 0.52 0.82 0.29 0.18 0.89

0.50
SSA-CWA (Dong et al., 2023a) 0.10 0.10 0.04 0.07 0.08 0.04 0.00 0.05 0.09 0.05 0.00 0.04

M-Attack (Li et al., 2025) 0.73 0.48 0.17 0.77 0.20 0.13 0.06 0.22 0.79 0.53 0.10 0.80
M-Attack-V2 (Ours) 0.87 0.64 0.23 0.96 0.58 0.34 0.13 0.67 0.83 0.59 0.17 0.94

1.00
SSA-CWA (Dong et al., 2023a) 0.11 0.06 0.00 0.09 0.06 0.04 0.01 0.12 0.05 0.03 0.01 0.08

M-Attack (Li et al., 2025) 0.82 0.54 0.13 0.95 0.31 0.21 0.04 0.37 0.81 0.57 0.15 0.83
M-Attack-V2 (Ours) 0.92 0.77 0.42 0.98 0.55 0.36 0.08 0.67 0.85 0.73 0.22 0.98

1.275
SSA-CWA (Dong et al., 2023a) 0.09 0.09 0.04 0.03 0.06 0.03 0.00 0.03 0.05 0.02 0.00 0.02

M-Attack (Li et al., 2025) 0.00 0.00 0.00 0.00 0.25 0.18 0.06 0.34 0.85 0.55 0.19 0.84
M-Attack-V2 (Ours) 0.91 0.78 0.40 0.99 0.56 0.32 0.11 0.67 0.87 0.72 0.22 0.97

Table 11. Comparison of results on 1K images. We provide ASR based on different thresholds as a surrogate for KMR following
M-Attack (Li et al., 2025).

threshold
GPT-4o Gemini-2.5-Pro Claude-3.7-extended

M-Attack M-Attack-V2 M-Attack M-Attack-V2 M-Attack M-Attack-V2

0.3 0.868 0.983 0.714 0.915 0.289 0.632
0.4 0.614 0.965 0.621 0.870 0.250 0.437
0.5 0.614 0.871 0.539 0.673 0.057 0.127
0.6 0.399 0.423 0.310 0.556 0.015 0.127
0.7 0.399 0.412 0.245 0.342 0.013 0.089
0.8 0.234 0.328 0.230 0.289 0.008 0.009
0.9 0.056 0.150 0.049 0.087 0.001 0.005

Table 12. Ablation study of M-Attack-V2 under different optimizer/attack variants.

Method Model GPT-5 (low) GPT-5 (medium) GPT-5 (high)

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

SSA-CWA (Dong et al., 2023a) Ensemble 0.08 0.04 0.00 0.08 0.09 0.05 0.01 0.06 0.10 0.05 0.01 0.07
FOA-Attack (Jia et al., 2025) Ensemble 0.90 0.67 0.23 0.94 0.90 0.69 0.21 0.96 0.87 0.68 0.24 0.96
M-Attack (Li et al., 2025) Ensemble 0.89 0.65 0.25 0.98 0.85 0.61 0.16 0.96 0.80 0.60 0.20 0.93

M-Attack-V2 (Ours) Ensemble 0.92 0.79 0.30 1.00 0.90 0.73 0.25 0.96 0.88 0.71 0.27 0.99

Table 13. Comparison on GPT-5 under three budget settings (low/medium/high).

Method Model
GPT-4o Claude 3.7-extended Gemini 2.5-Pro

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

M-Attack-V2-ADAM (Ours) Ensemble 0.91 0.78 0.40 0.99 0.56 0.32 0.11 0.67 0.87 0.72 0.22 0.97
M-Attack-V2-FGSM Ensemble 0.85 0.64 0.19 0.98 0.40 0.26 0.08 0.46 0.83 0.65 0.17 0.90

M-Attack-V2-MIFGSM Ensemble 0.90 0.66 0.23 0.96 0.45 0.30 0.07 0.57 0.84 0.64 0.15 0.87

Exhaustively accounting FLOPs for each architecture in an N -model ensemble is impractical. Instead, we introduce an
empirically measured inflation factor

ρN ≜
per-iteration FLOPs of the N -model ensemble

per-iteration FLOPs of one CLIP-B/16
,

with ρ1 = 1. Under this convention:

• AttackVLM costs 3M FLOPs per iteration.

• M-Attack-V1 costs 3ρNM FLOPs per iteration.
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Table 14. Cross-domain results on PatternNet (Li et al., 2018). We report KMRa/KMRb/KMRc and ASR (higher is better). Bold = best
in column; underline = second best. The shaded row is our method.

Method
GPT-4o Claude 3.7 Gemini 2.5

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

AttackVLM 0.06 0.01 0.00 0.02 0.06 0.02 0.00 0.00 0.09 0.04 0.00 0.03
SSA-CWA 0.05 0.02 0.00 0.13 0.04 0.03 0.00 0.07 0.08 0.02 0.01 0.15
AnyAttack 0.06 0.03 0.00 0.05 0.03 0.01 0.00 0.05 0.06 0.02 0.00 0.05
M-Attack 0.79 0.66 0.21 0.93 0.33 0.17 0.04 0.48 0.86 0.71 0.23 0.91

M-Attack-V2 0.83 0.71 0.24 0.93 0.58 0.40 0.09 0.73 0.88 0.68 0.22 0.97

Table 15. Human study on the imperceptibility of M-Attack-V2 under different perturbation budgets. We report the proportion (%) of
images identified by users; results are averaged over 10 user groups (mean ± std).

Proportion ϵ = 16, Mean ± Std ϵ = 8, Mean ± Std

Adversarial images correctly identified 42± 1.7 27.4± 1.6
Original images correctly identified 98± 1.6 93.1± 2.3

• SSA-CWA adds an inner sampling loop of K̂ steps for sharpness-aware minimization (SAM), lifting the complexity to
3ρNK̂M .

• M-Attack-V2 evaluates K local crops and, for each crop, forwards P auxiliary examples to reduce the variance of
M-Attack. This gives a complexity ofρNK

(
3M + PM

)
= ρNK(3 + P )M, where P is typically a small integer

(e.g., P = 2).

In practice, GPUs parallelize many of these operations, so wall-clock time per image does not scale linearly with FLOPs. On
a single NVIDIA RTX 4090 GPU, we measure the average time per attacked image (while running a batched optimization
with 32 images at the same time) as follows:

• SSA-CWA: 545.80± 4.21 s per image;

• M-Attack-V1: 22.04± 0.11 s per image;

• M-Attack-V2 (with K = 2, P = 2): 24.13± 0.84 s per image.

Thus, with K = 2, P = 2, M-Attack increases the runtime of M-Attack-V1 by only 9.4%, while yielding substantial gains
in attack quality: on Claude 3.7, we observe improvements of +20%, +17%, +3%, and +13% on KMRa, KMRb, KMRc,
and ASR, respectively; on GPT-4o, the corresponding gains are +8%, +3%, +1%, and +6%. More results are presented in
the Appx. F.1. Therefore, our M-Attack-V2 offers a configurable option between efficient yet effective and highly effective
attack (as presented in the main paper).

We omit AttackVLM and AnyAttack from the empirical runtime comparison: AttackVLM reports relatively low attack
performance, while AnyAttack devotes most of its computational budget to its novel pre-training stage, making its overall
cost not directly comparable to inference-time attacks like ours.

I. Additional Visualization
I.1. Visualization of Adversarial Samples

Fig. 4 and Fig. 8 visualize adversarial samples of different black-box attack algorithms under different perturbation
constraints. Under ϵ = 8, no significant difference exists between M-Attack and M-Attack-V2. On the ϵ = 16 setting, the
visual effect is still very close between M-Attack and M-Attack-V2. Since our M-Attack-V2 also greatly improves the
results under ϵ = 8, future directions might be improving the imperceptibility by adding constraints besides the ℓ∞. We also
provide all 100 images in the supplementary material for further reference.
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Table 16. Proportion of adversarial images from each attack that participants judged as perturbed in Study II (all at ϵ = 16). Lower values
indicate more perceptually stealthy perturbations.

Method Identified as perturbed images (%)

AnyAttack 84± 4.47
SSA-CWA 54± 8.49
M-Attack-V1 30± 10.1
M-Attack-V2 32± 8.0

Table 17. Unified robustness under input–preprocessing defenses. We report KMRa, KMRb, KMRc, and ASR (↑) for GPT-4o, Claude-3.7,
and Gemini-2.5. Bold indicates the best value within each metric column for the given defense block; shaded cells highlight M-Attack-V2
(numeric cells only).

Setting Method GPT-4o Claude 3.7 Gemini 2.5

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

JPEG (Q=75)

AttackVLM 0.06 0.02 0.00 0.03 0.07 0.02 0.00 0.02 0.08 0.04 0.00 0.04
SSA-CWA 0.08 0.04 0.01 0.10 0.07 0.02 0.00 0.05 0.09 0.06 0.01 0.09
AnyAttack 0.06 0.03 0.00 0.05 0.04 0.01 0.00 0.03 0.08 0.03 0.00 0.05
M-Attack 0.76 0.54 0.16 0.91 0.28 0.17 0.03 0.34 0.75 0.51 0.11 0.76

M-Attack-V2 0.89 0.69 0.20 0.97 0.55 0.36 0.09 0.68 0.75 0.56 0.18 0.82

DiffPure (t=25)

AttackVLM 0.05 0.02 0.00 0.01 0.05 0.02 0.00 0.01 0.08 0.03 0.00 0.01
SSA-CWA 0.07 0.03 0.00 0.02 0.04 0.02 0.00 0.03 0.07 0.01 0.00 0.05
AnyAttack 0.07 0.03 0.00 0.04 0.02 0.02 0.00 0.04 0.09 0.04 0.00 0.07
M-Attack 0.42 0.20 0.03 0.43 0.10 0.05 0.01 0.10 0.39 0.22 0.01 0.32

M-Attack-V2 0.73 0.47 0.15 0.72 0.19 0.11 0.04 0.20 0.61 0.42 0.06 0.56

DiffPure (t=75)

AttackVLM 0.08 0.05 0.00 0.02 0.04 0.02 0.00 0.00 0.04 0.01 0.00 0.01
SSA-CWA 0.05 0.03 0.01 0.06 0.05 0.03 0.00 0.03 0.07 0.02 0.00 0.05
AnyAttack 0.05 0.00 0.00 0.06 0.04 0.02 0.00 0.03 0.04 0.02 0.00 0.07
M-Attack 0.10 0.02 0.00 0.04 0.03 0.02 0.00 0.02 0.05 0.05 0.00 0.05

M-Attack-V2 0.13 0.06 0.01 0.07 0.07 0.02 0.00 0.06 0.12 0.06 0.01 0.08

Table 18. Cross-domain results on ChestMNIST, from MedMNIST (Yang et al., 2021). We report KMRa/KMRb/KMRc and ASR (higher
is better). Bold = best in column; underline = second best. The shaded row is our method.

Method
GPT-4o Claude 3.7 Gemini 2.5

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

AttackVLM 0.06 0.01 0.00 0.03 0.05 0.02 0.00 0.02 0.08 0.03 0.00 0.02
SSA-CWA 0.06 0.03 0.00 0.15 0.04 0.03 0.00 0.07 0.08 0.02 0.01 0.14
AnyAttack 0.06 0.02 0.00 0.05 0.03 0.01 0.00 0.04 0.07 0.02 0.00 0.05
M-Attack 0.89 0.70 0.22 0.92 0.31 0.18 0.07 0.31 0.85 0.67 0.23 0.96

M-Attack-V2 0.90 0.74 0.27 0.97 0.70 0.51 0.21 0.83 0.89 0.76 0.33 0.95

I.2. Visualization of Reasoning Models

Fig. 12 illustrates how GPT-o3 (OpenAI, 2025) responds to our adversarial samples. The model’s visual reasoning behaviors
can be broadly categorized into three types: no reasoning (response (d)), simple reasoning (responses (b) and (c)), and
zoom-in reasoning (response (a)). Notably, in response (a), GPT-o3 already identifies the central area as uncertain and
zooms in on it. However, its reasoning mechanism is not well-equipped to handle adversarial perturbations, resulting in
a response that remains semantically close to the target image despite the perturbation. This observation suggests that
vision reasoning offers a degree of robustness by detecting uncertainty and taking subsequent actions. During training,
incorporating explicit behaviors, such as refusing to answer or flagging potential adversarial inputs, could further enhance
the utility of vision-based inference under adversarial conditions.
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(c): Group of skiers adjust 
gear beside a snowy 
wooden fence near a rustic 
cabin surrounded by 
evergreen trees

(d): A bearded man lies asleep under crumpled blankets 
and patterned pillows

Query & Response

Target Image

(a) (b)

(c)

(d)

(a): Glitchy photos show rust-
covered scissors or pruning shears 
hanging outdoors against weathered 
wooden boards and surrounding 
greenery

(b): A small black-and 
white dog cuddles in 
someone’s arms, its head 
rest gently near a hand, 
paws tucked in, bathed in 
warm light

Figure 12. Visualization of GPT-o3’s response towards M-Attack-V2 adversarial samples. The underlined ‘glitchy’ denotes that O3
notices something unusual.
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